

MATLAB Marina: Conditional Statements, if-else Examples

Nested If Statements
Nested if statements are if-else statements that contain another if-else statement in
one of the conditionally executed blocks of statements. Nested if statements can be used
instead of using compound logic expressions involving logically ANDing logical expressions in if
statements.

The MATLAB program of Figure 1a determines if a metal rod’s length is within an accepted
range for the part. The rod’s nominal length is 4.5 cm and should be within 0.1 cm of the
nominal length to be acceptable.

Figure 1a. rodLength Program Implementation using Compound Comparison

The program of Figure 1b shows another implementation of the program of Figure 1a using
nested if statements instead of a compound logic expression. For this example, the program of
Figure 1a is the better choice of implementations; it is easier to follow and the code will be
easier to maintain. Nesting structures typically makes programs more difficult to debug and
maintain and should only be used if necessary.

Figure 1b. rodLength Program Implementation using Nested if

Inline Error Handling
An exception is an unexpected error. Exception (error) handling statements can be interspersed
with the program statements dealing with the error where it occurs. This is called inline error

% read in metal rod length
rodLength = input('Enter length of metal rod: ');
% determine if rod’s length is within accepted range
if ((rodLength >= 4.4) && (rodLength <= 4.6))
 fprintf('accept\n');
else
 fprintf('reject\n');
end

% read in metal rod length
rodLength = input('Enter length of metal rod: ');
% determine if rod’s length is within accepted range
if (rodLength >= 4.4)
 if (rodLength <= 4.6)
 fprintf('accept\n');
 else
 fprintf('reject\n');
 end
else
 fprintf('reject\n');
end

2

handling. Inline error handling is relatively straightforward to implement using a conditional
statement to check for the error but generally makes the program more difficult to maintain.

The MATLAB program of Figure 2a shows a program that performs division and the program of
Figure 2b shows how inline error handling can be added in this case to detect and avoid a divide
by zero error.

Figure 2a. Program to Perform Division

The statements where the error may occur should be written and tested first without the error
handling. Once the statements have been verified to work for the cases except the error cases,
then the statements for the inline error handling are added. Depending on how the potential
error is checked for, the original operation will be in either the if block or the else block and the
error handling operation will be in the other block. For the program of Figure 2b, the original
division operation is in the else block and the error handling operation is in the if block.

Figure 2b. Inline Error Handling Using if-else for Divide by Zero

MATLAB has a formal exception handling system. When errors are detected, instead of
displaying a message an exception can be thrown using the error function. If the program
does not include try-catch blocks to handle the exception, an error message is displayed
and the program is exited. MATLAB’s exception handling system will be covered in more detail
in the MATLAB Marina Exception Handling module.

% read in two numbers
num1 = input('Enter number 1: ');
num2 = input('Enter number 2 (not 0): ');

% perform division
num3 = num1/num2;
fprintf('%0.2f / %0.2f = %0.2f\n', num1, num2, num3);

% read in two numbers
num1 = input('Enter number 1: ');
num2 = input('Enter number 2 (not 0): ');

% perform division
if (num2 == 0)
 num3 = NaN;
 fprintf('divide by zero\n');
else
 num3 = num1/num2;
end
fprintf('%0.2f / %0.2f = %0.2f\n', num1, num2, num3);

3

Inline error handling is commonly used to ensure that invalid data is not processed. The
program of Figure 3 shows inline error handling added to the rod length program of Figure 1a.
The inline error handling is accomplished using nested if statements.

Figure 3. rodLength Program with Inline Error Handling

Last modified Monday, September 28, 2020

 MATLAB Marina is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

% read in metal rod length
rodLength = input('Enter length of metal rod: ');
% determine if rod’s length is within accepted range
if (rodLength >= 0.0)
 if ((rodLength >= 4.4) && (rodLength <= 4.6))
 fprintf('accept\n');
 else
 fprintf('reject\n');
 end
else
 fprintf('invalid rod length\n');
end

http://www.matlabmarina.com/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	MATLAB Marina: Conditional Statements, if-else Examples
	Nested If Statements
	Inline Error Handling

